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Abstract. Generalized Frobenius powers of an ideal were introduced in [HTW18]
as characteristic-dependent analogs of test ideals. However, little is known about
the Frobenius powers and critical exponents of specific ideals, even in the mono-
mial case. We describe an algorithm to compute the critical exponents of mono-
mial ideals, and use this algorithm to prove some results about their Frobenius
powers and critical exponents. Rather than using test ideals, our algorithm uses
techniques from linear optimization.

1. Introduction

Frobenius powers of an ideal with non-negative real-valued exponents were in-

troduced in [HTW18] as a characteristic-dependent analog of test ideals in F-finite

regular domains of prime characteristic. The motivation for defining Frobenius

powers was to find a prime characteristic invariant sensitive enough to mimic a

property of multiplier ideals in characteristic zero, namely that the multiplier ideal

J (Iλ) agrees with the multiplier ideal J (fλ) for a general f ∈ I. In particular,

it is known that J (fλ) = J (Iλ) when I is the monomial ideal generated by the

terms of f [How03]. Thus computations for arbitrary ideals can be reduced to the

monomial case.

Let S = K[x1, . . . , xm] be a standard graded polynomial ring over a field K of

characteristic p > 0. We let F : S → S denote the Frobenius homomorphism

of S. Recall that a ring S of characteristic p is called F-finite if S is a finitely

generated as a module over the subring F (S) = Sp = {fp : f ∈ S}. We will

assume throughout that K is an F-finite field so that the polynomial ring S is also

F-finite. However, we will quickly see there is no loss of generality in assuming

K = Fp.
The main result of our paper is Algorithm 3.7/Theorem 3.12, a deterministic

algorithm which computes all the critical exponents, and hence all the fractional

Frobenius powers, of an arbitrary monomial ideal over K. This algorithm does

not involve test elements; instead, it uses analytic geometry, base p arithmetic,

and a generalization to vectors of the long division algorithm for computing the

decimal expansion of a fraction. The algorithm appears to be very efficient in small

characteristic. As an immediate corollary to the algorithm, we recover by methods
1
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that avoid any reference to test ideals and F-thresholds that the critical exponents

of monomial ideals are rational [HTW18, 5.8].

Section 2 recalls necessary background on Frobenius powers and arithmetic in

base p. It also introduces notation that will be used throughout the paper, includ-

ing the (p, n)-Sierpinski simplex, a fractal that we use to describe the Frobenius

powers. Section 3 describes the algorithm for computing the critical exponents of

a monomial ideal and gives the proof of its validity. The algorithm is worked out

in some detail for the ideal (x2y2, x3z3) over F3 and F5 in Examples 3.9 and 3.10.

In Section 4, we use our techniques to compute some Frobenius powers and

critical exponents in more generality. Example 4.2 does this computation for

(x2y2, x3z3) in all characteristics simultaneously, demonstrating as a proof-of-concept

that this is possible. Proposition 4.1 computes the least critical exponent for any

height one monomial ideal containing a pure power. We close with some questions

for further research.

2. Background on Frobenius Powers

2.1. Frobenius Powers. Let S be an F-finite standard graded polynomial ring

as above. In [HTW18], Hernández-Teixeira-Witt define the Frobenius powers of an

ideal I ⊆ S as a family of ideals I [λ] parametrized by a non-negative real number

λ, which agree with the usual Frobenius powers I [p
e] = (fp

e | f ∈ I) when λ = pe.

As one might hope, this family of ideals has good containment properties:

Proposition 2.1 ([HTW18, 3.16]). Let I, J ⊆ S be ideals, and let λ, µ ∈ R≥0.
Then:

(a) (Monotonicity) If λ < µ, then I [λ] ⊇ I [µ].

(b) (Right Constancy) For every λ, there exists an ε > 0 such that I [µ] = I [λ]

whenever λ ≤ µ < λ+ ε.

(c) I [λ]I [µ] ⊇ I [λ+µ]

(d) For any ideal J ⊆ S, we have I [λ]J [λ] ⊇ (IJ)[λ].

Similar to jumping numbers and F-jumping numbers of multiplier ideals and test

ideals, we are interested in determining the Frobenius powers of various monomial

ideals I and the real numbers λ > 0 such that I [µ] 6= I [λ] for all µ < λ, which

are called the critical exponents of I. In particular, there is a smallest positive

critical exponent by right constancy; it is called the least critical exponent of I and

is denoted by lce(I).

In the remainder of this subsection, we summarize the stages by which gener-

alized Frobenius powers are constructed, and we make some simple observations

that simplify the case of monomial ideals to working over Fp.
Given an ideal I ⊆ S and λ ∈ R≥0, the Frobenius power I [λ] is constructed as

follows:
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• If λ = k is an integer with base p expansion k = k0 + k1p+ · · · krpr, then

I [k] = Ik0(Ik1)[p] · · · (Ikr)[pr]

• If λ = k
q
∈ Z[1

p
]≥0 is a non-negative p-adic rational, we define I [

k
q
] = (I [k])[

1
q
],

where for any ideal J , the ideal J [1/q] is the smallest ideal L such that

L[q] ⊇ J as originally defined in [BMS08]. In practice, because we are

ultimately interested in ideals J in a polynomial ring over Fp, the ideal J [ 1
q
]

is always easily computable by [BMS08, 2.5].

• For any real number λ ≥ 0, the Frobenius power I [λ] is then defined by

taking any monotone decreasing sequence (λj) of p-adic rationals converg-

ing to λ from above. The monotonicity of Frobenius powers then yields an

ascending chain of ideals I [λ1] ⊆ I [λ2] ⊆ · · · , and I [λ] is defined to be the

stable value of this chain, which exists since S is Noetherian.

In particular, every real Frobenius power is the Frobenius power of some p-adic

rational.

Proposition 2.2. Let ϕ : S → T be a ring homomorphism between F-finite regular

domains, I ⊆ S be an ideal, and λ ∈ R≥0. Then:

(a) (IT )[λ] ⊆ I [λ]T , with equality if λ is an integer.

(b) If in addition S is free over Sq with basis e1, . . . , en, T is free over T q, and

ϕ(e1), . . . , ϕ(en) are part of a basis for T over T q, then (IT )[
k
q
] = I [

k
q
]T .

Proof. (a) If λ = k is an integer, it is clear that (IT )[k] = I [k]T since homo-

morphisms preserve both ordinary powers and p-th power Frobenius powers. As

(I [
k
q
])[q] ⊇ I [k], we have (I [

k
q
]T )[q] = (I [

k
q
])[q]T ⊇ I [k]T = (IT )[k] so that I [

k
q
]T ⊇

(IT )[
k
q
]. The claim then follows for arbitrary λ by applying the preceding inclusions

to a monotone decreasing sequence of p-adic rationals converging to λ.

(b) By the previous part, it is enough to show that I [
1
q
]T = (IT )[

1
q
] for any ideal

I ⊆ S. For f ∈ I, write f =
∑

i f
q
i ei, so ϕ(f) =

∑
i ϕ(fi)

qϕ(ei). By [BMS08, 2.5],

both the ideals (IT )[
1
q
] and I [

1
q
]T are generated by all elements of the form ϕ(fi)

for some f ∈ I. �

Remark 2.3. It is worth noting two important cases in which one can apply the

second part of Proposition 2.2 are when:

• T is obtained from S by extension of the ground field. Thus, there is no

loss of generality by working over Fp when computing the Frobenius powers

of monomial ideals.

• S = Fp[x1, . . . , xm], T = Fp[y1, . . . , ys], and ϕ(x1), . . . , ϕ(xm) are square-

free monomials with disjoint supports. In this case, S has a well-known

basis over Sq consisting of all monomials xa = xa11 · · ·xamm with ai < q for
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all i, and ϕ(xa) = yb for some b ∈ Nm with bj < q for all j by assumption

so that ϕ(xa) is part of the monomial basis for T over T q.

2.2. Frobenius Powers of Monomial Ideals. In this subsection, we fix the

notation used throughout the rest of the paper and make some simple observations

about the Frobenius powers of monomial ideals.

Notation 2.4. If xb = xb11 . . . x
bm
m is a monomial of S, we say that b = (b1, . . . , bm) ∈

Nm is the exponent vector of xb. Henceforth, we assume that I = (xa1 , . . . ,xan) is

a nonzero, proper monomial ideal in S, and we let A = (a1| · · · |an) be the m× n
matrix whose columns are the exponent vectors of the generating monomials of I.

We set 1 = (1, 1, . . . , 1) ∈ Rn. All norms of vectors v = (v1, . . . , vn) ∈ Rn refer to

the 1-norm ‖v‖ =
∑

i |vi|. In particular, if u ∈ Nn and k ∈ N, we recall that the

multinomial coefficient
(
k
u

)
is equal to k!

u1!u2!···un! if ‖u‖ =
∑

i ui = k and is equal

to zero otherwise.

Convention 2.5. We adapt operations/relations on numbers to vectors u ∈ Rn

coordinatewise. For example, buc = (bu1c, . . . , bunc) is the vector obtained by

taking the floor of each component; we write u ≤ v to mean ui ≤ vi for all i and

u < v to mean ui < vi for all i.

Proposition 2.6. Let I ⊆ S be a monomial ideal. Then with the notation above:

I [
k
q
] = (xb

Au
q
c | u ∈ Nn, ‖u‖ = k,

(
k
u

)
6≡ 0 (mod p))

Proof. By definition, I [
k
q
] = (I [k])[

1
q
] where

I [k] = (xAu | u ∈ Nn, ‖u‖ = k,
(
k
u

)
6≡ 0 (mod p))

by [HTW18, 3.5]. Since the monomials xb with b < q1 form a basis for S as a

free Sq-module, we can compute the q-th root Frobenius power of an ideal J =

(f1, . . . , fn) ⊆ S as J [ 1
q
] = (fi,b | f =

∑
b<q1 f

q
i,bxb) by [BMS08, 2.5]. Applying

this description to I [k] yields the claimed description for I [
k
q
]. �

Since every Frobenius power I [λ] agrees with the Frobenius power of some p-adic

rational exponent, we have the following as an immediate consequence.

Corollary 2.7. The Frobenius powers I [λ] of a monomial ideal I ⊆ S are monomial

ideals.

Corollary 2.8. Let I ⊆ S be a monomial ideal as above. If x2j does not divide any

xai, then for every 0 ≤ λ < 1, xj does not divide any generator of I [λ].

Proof. Without loss of generality, we may assume λ = k
q

is a p-adic rational. By

the above proposition, the generators of I [
k
q
] have the form xb

Au
q
c, for some vector

u ∈ Nn such that ‖u‖ = k. Since each xai is not divisible by x2j , the j-th row of A
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contains no entries greater than one, and we have (Au)j ≤ ‖u‖ = k < q. Hence,

the exponent of xj is b (Au)j
q
c = 0. �

Corollary 2.9. If I ⊆ S is a monomial ideal that contains a squarefree monomial,

then lce(I) = 1.

Proof. If xa1 is a squarefree monomial generator of I and e1 ∈ Nn denotes the

corresponding standard basis vector, then I [
k
q
] contains xb

A(ke1)
q
c = xb

ka1
q
c = 1.

Hence, I [
k
q
] = S for all k

q
< 1. �

As a consequence of the above corollary, every squarefree monomial ideal has

least critical exponent equal to one. This is not surprising as the least critical

exponent is supposed to be an analog of the F-pure threshold, and squarefree

monomial ideals are F-pure. However, a monomial ideal need not be F-pure in

order to have least critical exponent equal to one.

Example 2.10. The ideal I = (x2, xy) ⊆ S = Fp[x, y] is not F-pure by Fedder’s

criterion [Fed83, 1.12] since

(I [p] : I) = (x2p−2, xp−2yp) ∩ (x2p−1, xp−1yp−1) = (x2p−1, x2p−2yp−1, xp−1yp) ⊆ m[p]

However, lce(I) = 1 because I contains a square-free monomial.

Definition 2.11. For any monomial xb ∈ S, we define the critical exponent of xb

as:

λb(I) = sup{λ ∈ R≥0 : xb ∈ I [λ]} = sup{k
q
∈ Z[1

p
]≥0 : xb ∈ I [

k
q
]}

Since I [k] ⊆ Ik is generated in degrees at least k, it is clear that xb /∈ I [k] for

k = ‖b‖ + 1 so that the above suprema are always finite. That the two suprema

are equal is clear from the right constancy of Frobenius powers and the density of

p-adic rationals.

Remark 2.12. We note that xb /∈ I [λb] by the right constancy of Frobenius

powers so that λb(I) is in fact a critical exponent of I. By [HTW20, 2.5], the

above definition coincides with what in that paper is called

crit(I,b + 1) = sup{λ ∈ R≥0 : I [λ] * (xb1+1
1 , . . . , xbm+1

m )}

In particular, we note that

lce(I) = λ0(I) = crit(I,1) = sup{λ ∈ R≥0 : I [λ] * (x1, . . . , xm)}

and since I [1] = I ⊆ (x1, . . . , xm), it follows that 0 < lce(I) ≤ 1.

Proposition 2.13. Every critical exponent of a monomial ideal I ⊆ S is of the

form λb(I) for some b ∈ Nn.

Proof. Although we do not assume that I is m-primary, the same argument as in

[HTW20, 2.6] shows that every critical exponent of I is of the form crit(I, a), except
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that a priori we only have a ∈ Nn with a 6= 0 instead of a > 0. However, since

we know that the Frobenius power I [λ] is a monomial ideal by Corollary 2.7, it is

easily seen that I [λ] * (xa11 , . . . , x
an
n ) if and only if the monomial ma =

∏
ai>0 x

ai−1

is contained in I [λ]. Taking ã = max(a,1), it is clear that mã = ma so that

I [λ] * (xa11 , . . . , x
an
n ) if and only if I [λ] * (xã11 , . . . , x

ãn
n ). Hence, we have crit(I, a) =

crit(I, ã) = λb(I) for b = ã− 1. �

Remark 2.14. Due to their close relationship with test ideals of principal ideals,

Skoda’s Theorem for Frobenius powers [HTW18, 3.17] implies that every critical

exponent λ > 0 satisfies that λ− dλe+ 1 is also a critical exponent in the interval

(0, 1]. Consequently, we will only concern ourselves with finding critical exponents

in this interval.

2.3. Addition Base p and the Sierpinski Simplex. Our next task is to shed

some light on the condition
(
k
u

)
6≡ 0 (mod p). There is a useful interpretation in

terms of the base p expansion of u.

Lemma 2.15. Suppose ‖u‖ = k. We have
(
k
u

)
6≡ 0 (mod p) if and only if the ad-

dition
∑
ui = k involves no carries in base p. That is, if we write u = (u1, . . . , un)

and write each ui =
∑

j ui,jp
j, then for all j we have

∑
i ui,j < p.

Proof. For an integer m, let νp(m) represent the number of times m is divisible

by p. Then, if the base p expansion of m is m =
∑
cip

i, we have νp(m!) =∑
i 6=0 ci(1 + p+ p2 + · · ·+ pi−1).

Now observe that νp
(
k
u

)
= νp(k!)−

∑
νp(ui!). Writing k =

∑
ajp

j in base p, we

have aj =
∑
vi,j + cj−1 − pcj, where cj is the number of carries in the pj place.

We compute νp
(
k
u

)
=
∑
cj. Thus,

(
k
u

)
≡ 0 (mod p) if and only if νp

(
k
u

)
≥ 1 if and

only if there are carries in the addition. �

The description in terms of addition base p allows us to translate from vectors

of integers u with ‖u‖ = k to vectors of p-adic rational numbers v with ‖v‖ = k
q
.

Definition 2.16. Fix a prime p and a dimension n. The (p, n)-Sierpinski simplex

is the set Sp,n consisting of all n-tuples v = (v1, . . . , vn) ∈ Rn such that each vi is a

terminating decimal in base p and these decimals add without a carry. The closed

(p, n)-Sierpinski simplex is the set Sp,n consisting of all real admissible n-tuples

v = (v1, . . . , vn) ∈ Rn for which it is possible to choose base p representations of

every entry vi in such a way that
∑
vi adds without carries.

Remark 2.17. The distinction between the open and closed Sierpinski simplices

isnot simply the distinction between p-adic fractions and real numbers. The non-

uniqueness of decimal representations for terminating decimals allows the closed

Sierpinski simplex to contain many rational points that are missing from the open

simplex. For example, S2,2 does not contain (1
2
, 1
2
) = (.1, .1) because the sum
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.1 + .1 = 1 involves a carry. However, S2,2 does contain this point, because we

may choose to write it as (.1, .01), and the sum .1 + .01 = .1 . . . does not require

a carry.

Remark 2.18. The sets Sp,n and Sp,n are fractals. S2,2 is the familiar Sierpinski

gasket, and Sp,n has dimension logp
(
p+n−1
n

)
. We provide several iterative methods

for building these fractals.

Method one: Set X = {v ∈ Nn : ‖v‖ < p}. Put S1 = {1
p
v : v ∈ X}, S2 =

{u+ 1
p2

v : u ∈ S1,v ∈ X}, and in general Si = {u+ 1
pi

v : u ∈ Si−1,v ∈ X}.
Then Sp,n =

⋃
Si. Equivalently, Sp,n = X + 1

p
Sp,n.

Method two: Let T0 be the unit hypercube {(x1, . . . , xn) : 0 ≤ xi ≤ 1}. Sub-

divide T0 into pn congruent hypercubes of side length 1
p

in the standard

way. Then delete all the smaller cubes that lie entirely in the half-space∑
xi ≥ 1. Call the result T1. Then replace each of the cubes in T1 with

a 1
p
-scale copy of T1; the result is T2. In general, obtain Ti by replacing

each of the surviving cubes in T1 with a 1
pi−1 -scale copy of Ti−1 (or, equiva-

lently, replace each of the surviving cubes in Ti−1 with a copy of T1). Then

Sp,n = ∩Ti.
Method three: Let W0 be the unit n-simplex (the convex hull of the origin and

the n standard basis vectors). Divide each of the edges into p equal seg-

ments, and draw in all hyperplanes parallel to the sides of W0 and through

the new vertices. This divides W0 into
(
p+n−1
n

)
+
(
p+n−2
n

)
congruent sub-

simplices, of which
(
p+n−1
n

)
are oriented correctly. Delete the backwards

simplices and call the result W1. In general, obtain Wi+1 by replacing each

simplex in Wi+1 with a scaled-down copy of W1.

Theorem 2.19. Let I be a monomial ideal and b ∈ Nm. Then

λb(I) = sup{‖v‖ : v ∈ Sp,n, Av < b + 1}.

Proof. If v ∈ Sp,n with Av < b+1, then ‖v‖ is a p-adic rational, say ‖v‖ = k
q
, and

we can write v = u
q

for some u ∈ Nn with ‖u‖ = k. Since v ∈ Sp,n, it follows from

Lemma 2.15 that
(
k
u

)
6≡ 0 (mod p) so that xb

Au
q
c ∈ I [

k
q
] by Proposition 2.7. As

bAu
q
c = bAvc ≤ b, it follows that xb ∈ I [

k
q
]. Hence, k

q
= ‖v‖ ≤ λb(I), which shows

that the supremum on the right in statement of the theorem is at most λb(I). The

reverse inequality is proved similarly. �

Remark 2.20. The supremum in the above theorem is never attained by any

v ∈ Sp,n with Av < b+1; if it were, we would have λ = λb(I) = ‖v‖ and xb ∈ I [λ]
as the proof of the theorem shows. But then xb ∈ I [λ+ε] for some ε > 0 by the

right constancy of Frobenius powers (Proposition 2.1), contradicting the definition

of λb(I).
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2.4. Truncations and Witnesses. Partially following [Her12], we introduce no-

tation for truncating the base p expansions of real numbers.

Definition 2.21. Let e ≥ 0 be an integer and α ∈ (0, 1] with nonterminating base

p expansion α =
∑∞

i=1
α(i)

pi
.

(i) The e-th truncation of α is 〈α〉e = α(1)

p
+ α(2)

p2
+ · · · + α(e)

pe
if e ≥ 1, and

〈α〉0 = 0.

(ii) If α ∈ Z[1
p
] with terminating base p expansion α = α1

p
+ α2

p2
+ · · ·+ αr

pr
where

αr 6= 0, we define the e-th strict truncation of α by

σe(α) =

{
α if e > r

α1

p
+ α2

p2
+ · · ·+ αe

pe
if e ≤ r

We also set 〈0〉e = σe(0) = 0 for all e.

Lemma 2.22 ([Her12, 2.5]). Let α, β ∈ [0, 1] and e ≥ 0 be an integer.

(a) If α > 0, then dpeαe = pe 〈α〉e + 1.

(b) If β ∈ 1
pe
N and β < α, then β ≤ 〈α〉e.

(c) If β ≤ α, then 〈β〉e ≤ 〈α〉e.

As usual, we also extend the preceding definitions to vectors componentwise to

make the following definition.

Definition 2.23. Given an integer e ≥ 0, an e-witness for λ = λb ∈ (0, 1] is a

vector w ∈ Sp,n such that Aw < b + 1 and ‖w‖ = 〈λ〉e. We denote the set of all

e-witnesses for λ by We. A family of witnesses for λ is a sequence of vectors {we}
such that we is an e-witness for λ and σe(we+1) = we for all e.

Remark 2.24. We record some simple observations about witness vectors that

will be useful below:

• If w is an e-witness for λ, then w ∈ 1
pe
Nn since w ∈ Sp,n and ‖w‖ = 〈λ〉e ∈

1
pe
N. In particular, a 0-witness is a vector w ∈ Nn with ‖w‖ = 〈λ〉0 = 0 so

that W0 = {0}.
• If w is an e′-witness for λ and e ≤ e′, then σe(w) is easily seen to be an

e-witness for λ since ‖σe(w)‖ = σe(‖w‖) = σe(〈λ〉e′) = 〈λ〉e. Moreover, we

have ‖w − σe(w)‖ = ‖w‖ − ‖σe(w)‖ = 〈λ〉e′ − 〈λ〉e ≤
p−1
pe+1 + · · · + p−1

pe′
=

p−e − p−e′ .

Theorem 2.25. Let λ = λb be a critical exponent of I with λ ∈ (0, 1].

(a) If {we} is a family of witnesses for λ, then w = lime→∞we exists, and

‖w‖ = λ.

(b) For every integer e ≥ 0, there exists an e-witness for λ.

(c) There exists a family of witnesses for λ.
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Proof. (a) If e ≤ e′, then σe(we′) = we since {we} is a family of witnesses.

Hence, Remark 2.24 shows that ‖we′ −we‖ < p−e for all e′ ≥ e so that {we} is a

Cauchy sequence and, therefore, converges. Consequently, ‖w‖ = lime→∞ ‖we‖ =

lime→∞ 〈λ〉e = λ.

(b) First, note that 〈λ〉e < λ by definition since we choose the nonterminating

representation of λ. By Theorem 2.19, we know there is a w ∈ Sp,n with Aw < b+1

such that 〈λ〉e < ‖w‖ ≤ λ. It then follows from Lemma 2.22 that 〈‖w‖〉e = 〈λ〉e.
We also note that ‖w‖ /∈ 1

pe
N, since otherwise we would have ‖w‖ ≤ 〈λ〉e by

Lemma 2.22. Hence, the terminating base p expansion of ‖w‖ has more than e

decimals so that σe(‖w‖) = 〈‖w‖〉e. Then σe(w) ∈ Sp,n since w ∈ Sp,n, and

Aσe(w) ≤ Aw < b + 1. As ‖σe(w)‖ = σe(‖w‖) = 〈‖w‖〉e = 〈λ〉e, it follows that

σe(w) is an e-witness for λ.

(c) By the previous part, there exists a sequence of vectors {we} in the set

P = {w ∈ [0, 1]n : Aw ≤ b + 1} such that we is an e-witness for every e. Since

this set is compact, there is a subsequence {wek} that converges to some vector w.

We will now recursively construct for each e ≥ 0 a sequence of vectors {w(e)
k }

and vectors v0, . . . ,ve such that w
(e)
k → w, w

(e)
k is an ek-witness for some ek ≥ k

for each k, vh is an h-witness for 0 ≤ h ≤ e, and σh(w
(e)
k ) = vh for all k � 0 for

each h. The resulting sequence {ve} will be the desired family of witnesses, which

also converges to w. Set w
(0)
k = wek , the terms of the convergent subsequence

from the previous paragraph. Taking v0 = 0, it is clear that σ0(w
(0)
k ) = v0 for all

k so that {w(0)
k } has the desired properties.

Suppose that we have already constructed the sequence {w(e)
k } and the vectors

v0, . . . ,ve. Now, consider the sequence of truncations {σe+1(w
(e)
k )}. Since each

truncation is still contained in the compact set P , this sequence has a convergent

subsequence σe+1(w
(e)
k`

) → ve+1. However, since each truncation is an (e + 1)-

witness (for at least k ≥ e + 1), every term of this subsequence is eventually

contained in the discrete set 1
pe+1Nn. Hence, this subsequence is eventually constant

so that σe+1(w
(e)
k`

) = ve+1 for all `� 0. In particular, we see that ve+1 is an (e+1)-

witness. Hence, if we define w
(e+1)
` = w

(e)
k`

, then w
(e+1)
` → w since it is subsequence

of a sequence converging to w, w
(e+1)
` is an e`-witness for some e` = ek` ≥ k` ≥ `,

and σh(w
(e+1)
` ) = σh(w

(e)
k`

) = vh for all ` � 0 for 0 ≤ h ≤ e + 1. Thus, we can

construct the desired sequences of vectors recursively.

To see that the resulting sequence of e-witnesses {ve} is a family of witnesses, we

note that σe(ve+1) = σe(σe+1(w
(e+1)
k )) = σe(w

(e+1)
k ) = ve for all e and k � 0. �

Remark 2.26. The argument of recursively passing to subsequences in the proof

of part (c) of the theorem above seems somewhat necessary. For example, suppose

that p = 5, and consider the sequence {we}e≥2 defined by we = (2
5
, 2
5
− 1

5e
) =
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(0.2, 0.144 . . . 4) if e is even and we = (2
5
− 1

5e
, 2
5
) = (0.144 . . . 4, 0.2) if e is odd.

Clearly, we have we → w = (2
5
, 2
5
). However, for k ≥ e, the sequence of truncations

{σe(wk)} is given by σe(wk) = (2
5
, 2
5
− 1

5e
) if k is even and σe(wk) = (2

5
− 1

5e
, 2
5
) if k

is odd. Thus, we must pass to a subsequence (whose terms will have indices that

are eventually always even or always odd) in order to obtain a single stable limit

vector. Moreover, we must do this recursively to ensure that we are not picking

ve = (2
5
, 2
5
− 1

5e
) but then ve+1 = (2

5
− 1

5e+1 ,
2
5
) for example.

3. An Algorithm for Computing Critical Exponents

Our strategy for computing the critical exponent λb(I) associated to b ∈ Nm is

to recursively compute its base p expansion to e decimal places of accuracy. We

begin by defining an (infinite) process that computes all e-witnesses to λb for all e.

Later in Algorithm 3.7, we show this can be adapted to a terminating algorithm.

Proposition 3.1. Let λ = λb be a critical exponent of I with λ ∈ (0, 1]. If

w ∈ We for some e ≥ 1 and we write w = σe−1(w) + z
pe

for some z ∈ Nn, then

σe−1(w) ∈ We−1 and

‖z‖ = max{‖v‖ : v ∈ Nn, Av < per, ‖v‖ < p}

where r = b + 1− Aσe−1(w).

Proof. We have already observed that σe−1(w) ∈ We−1 in Remark 2.24. Let m be

the maximum on the righthand side above. It is clear that Aw < b + 1 implies

Az < per. Since w ∈ Sp,n and σe−1(w) ∈ 1
pe−1Nn, we must also have ‖z‖ < p

so that ‖z‖ ≤ m. If z < m, then there is a vector v ∈ Nn with Av < per and

‖z‖ < ‖v‖ < p. Then w′ = σe−1(w) + v
pe
∈ Sp,n and Aw′ < b + 1 so that

‖w′‖ < λ by Theorem 2.19 and Remark 2.20. Consequently, Lemma 2.22 implies

‖σe−1(w)‖ + ‖v‖
pe

= ‖w′‖ ≤ 〈λ〉e = ‖w‖ = ‖σe−1(w)‖ + ‖z‖
pe

, contradicting that

‖z‖ < ‖v‖. Hence, ‖z‖ = m as claimed. �

Algorithm 3.2. Fix a monomial xb /∈ I, and let e ≥ 0 an integer. Starting with

L0 = {0}, inductively compute the set Le for each e ≥ 1 as follows:

(1) For each u ∈ Le−1, compute the remainder vector r = b + 1− Au.

(2) Find all solutions v ∈ Nn maximizing ‖v‖ subject to the constraints that

Av < per and ‖v‖ < p.

(3) Append each u + 1
pe

v to Le.
(4) After doing this for all u, compute λe = max{‖w‖ : w ∈ Le}, and remove

from Le every w with ‖w‖ < λe.

Remark 3.3. We make some simple observations about the preceding algorithm:

• The computation of all v in Step 2 terminates because there are finitely

many non-negative integer vectors v with ‖v‖ < p.
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• Every element w = u + 1
pe

v ∈ Le is contained in 1
pe
Nn ∩ Sp,n since u ∈

Le−1 ⊆ 1
pe−1Nn ∩ Sp,n by induction and ‖v‖ < p so that computing the

norm of u + 1
pe

v doesn’t involve a carry.

Theorem 3.4. For every integer e ≥ 0, the set of vectors Le produced by Algo-

rithm 3.2 is precisely the set We of all e-witnesses for λ.

Proof. We argue by induction on e. By Remark 2.24, it follows that W0 = L0.

Suppose that e ≥ 1 and We−1 = Le−1. If w ∈ We for some e ≥ 1 and we

write w = σe−1(w) + z
pe

for some z ∈ Nn, it follows from Proposition 3.1 that

σe−1(w) ∈ We−1 = Le−1 and that w added to Le by Step 3 of the algorithm. If

it were the case that ‖w‖ < λe in Step 4 of the algorithm, then there would be

a u ∈ Le−1 = We−1 and v ∈ Nn a solution from Step 2 of the algorithm such

that
∥∥∥u + v

pe

∥∥∥ > ‖w‖ = 〈λ〉e. However, it also follows from Remark ?? that

u + v
pe
∈ 1

pe
Nn ∩ Sp,n, and A(u + v

pe
) < b + 1 by construction. Hence, we have∥∥∥u + v

pe

∥∥∥ < λ by Theorem 2.19 and Remark 2.20 so that
∥∥∥u + v

pe

∥∥∥ ≤ 〈λ〉e by

Lemma 2.22, which is a contradiction. Thus, λe = ‖w‖ = 〈λ〉e, and w is not

removed from Le in Step 4 so that We ⊆ Le. Conversely, if w ∈ Le, then as

already noted above we have w ∈ Sp,n and Aw < b + 1 by construction, and

‖w‖ = λe = 〈λ〉e by Step 4 of the algorithm so that w ∈ We. Therefore, Le =We

as claimed. �

In order to turn Algorithm 3.2 into an algorithm to compute λb with finite

resources, we look for inspiration from the familiar algorithm using long division

to produce decimal expansions of fractions. We recall a simple example of that

algorithm below as motivation.

Example 3.5. We use long division to find the decimal expansion of 1
22

. Long

division first divides 22 into 1, computing a quotient of 0 and a remainder of

1. It then multiplies the remainder by 10 and divides by 22 again, producing a

quotient of 0 and a remainder of 10. At the next step, we get a quotient of 4 and a

remainder of 12, followed by a quotient of 5 and a remainder of 10. At this point,

the algorithm recognizes that the new remainder has appeared before, so all steps

from the previous remainder of 10 will repeat. Thus all future quotients will repeat

in a pattern of 4, 5, 4, 5, . . . . We conclude that 1
22

= 0.045.

Unfortunately, adapting the idea of long division to our vector algorithm is

slightly complicated because there may be multiple vectors v for a given u, so

our vectors of digits are not forced to repeat in the same pattern. As a means of

circumventing these difficulties, we make the following observation.
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Remark 3.6. With the notation of Algorithm 3.2, since the exponent matrix A

is fixed, there exists an integer Ω such that

max{‖Av‖∞ : v ∈ Nn, ‖v‖ < p} ≤ (1− 1
p
)Ω (3.1)

That is, every entry of the vectors Av is at most (1 − 1
p
)Ω. Consequently, if any

entry of the vector per is greater than Ω, we may replace that entry with Ω without

changing the result of the algorithm. In particular, after this modification, there

are only finitely many possible remainder vectors since per always has nonnegative

integer entries.

This motivates the following reformulation of Algorithm 3.2 as an algorithm that

will terminate after finitely many steps.

Algorithm 3.7. Fix a monomial xb /∈ I and an integer Ω as in Remark 3.6, and

let e ≥ 0 be an integer. Starting with L0 = {0} and L∞ = ∅, inductively compute

the sets Le and L∞ for each e ≥ 0 as follows:

(1) If Le = ∅, then output λ = max{‖w‖ : w ∈ L∞}.
(2) Otherwise, for each u ∈ Le, compute the remainder vector

r(e,u) := min(pe+1(b + 1− Au),Ω1).

(3) If r(e,u) = r(e − s, σe−s(u)) for some s with e ≥ s ≥ 1, then append the

vector

u +
1

ps − 1
(u− σe−s(u))

to L∞.

(4) Otherwise, find all solutions v ∈ Nn maximizing ‖v‖ subject to the con-

straints that Av < r(e,u) and ‖v‖ < p, and append each u + 1
pe

v to

Le+1.

(5) After doing this for all u, if Le+1 6= ∅, compute λe+1 = max{‖w‖ : w ∈
Le+1}, and remove from Le+1 every w with ‖w‖ < λe+1.

Remark 3.8. Since there are finitely many possible remainder vectors by con-

struction, Le will be empty for sufficiently large e. At each stage, Le is a finite set,

so we can add only finitely many vectors to L∞. Hence, L∞ will be a finite set

when the algorithm terminates.

Note also that both Algorithms 3.2 and 3.7 depend only on the exponent matrix

A, so we need not be given a minimal set of generators for I. We will exploit this

fact later in Example 5.4.

Example 3.9. Here, we use Algorithm 3.7 to compute the least critical exponent

of the ideal I = (x2y2, x3z3) in S = F3[x, y, z]. Thus, we have p = 3 and an



COMPUTING GENERALIZED FROBENIUS POWERS OF MONOMIAL IDEALS 13

exponent matrix

A =

2 3

2 0

0 3

 ,

and we will compute λb where b = (0, 0, 0). To ensure that the remainder vectors

eventually repeat, we must choose an integer Ω such that

max{‖Av‖∞ : v ∈ N2, ‖v‖ < p} ≤ (1− 1
p
)Ω.

The vectors v ∈ N2 with ‖v‖ < 3 are shown below labeled by their values Av.

(
0
0
0

) (
2
2
0

)

(
3
0
3

)

(
4
4
0

)

(
5
2
3

)

(
6
0
6

)

From this, we easily see that the smallest possible value for Ω is Ω = 9.

Table 1 below summarizes each step of the Algorithm 3.7 for this example. Each

row shows the list of vectors currently in the sets L∞ and Le at each step as well

as the corresponding remainder vectors r(e,u).

e L∞ Le r(e,u)

0 ∅
(

0

0

) 3

3

3



1 ∅ 1
3

(
1

0

) 3

3

3


2 1

2

(
1

0

)
∅ –

Table 1. Algorithm 3.7 for the least critical exponent of the ideal

(x2y2, y3z3) ⊆ F3[x, y, z]

In this case, we note that (1, 0) is the only vector v ∈ N2 with ‖v‖ < 3 and Av <

(3, 3, 3) of maximum norm. The remainder immediately repeats at the next step so

that the appropriate limit vector is added to L∞, and the algorithm then terminates

since L2 is empty, outputting lce(I) = 1
2
. This agrees with Proposition 4.1 below.
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Example 3.10. We now demonstrate a more involved example. Consider the

ideal I = (x2y2, x3z3) in S = F5[x, y, z] so that p = 5. We will compute λb for

b = (1, 1, 0), the smallest Frobenius power of I excluding the monomial xy. The

vectors v ∈ N2 with ‖v‖ < 5 are shown below labeled by their values Av.

(
0
0
0

) (
2
2
0

)
(

3
0
3

)
(

4
4
0

)
(

5
2
3

)
(

6
0
6

)

(
6
6
0

)
(

7
4
3

)
(

8
2
6

)
(

9
0
9

)

(
8
8
0

)
(

9
6
3

)
(

10
4
6

)
(

11
2
9

)
(

12
0
12

)

From this, we easily see that the smallest possible value for Ω is Ω = 15.

e L∞ Le r(e,u)

0 ∅
(

0

0

) 10

10

5



1 ∅ 1
5

(
4

0

)
, 1
5

(
3

1

) 10

10

15

 ,

 5

15

10



2 ∅

1
5

(
4

0

)
+ 1

25

(
4

0

)
= 1

25

(
24

0

)
,

1
5

(
4

0

)
+ 1

25

(
3

1

)
= 1

25

(
23

1

)
,

1
5

(
3

1

)
+ 1

25

(
2

0

)
= 1

25

(
17

5

)
(∗)

10

10

15

 ,

 5

15

15



3

(
1

0

)
1
25

(
23

1

)
+ 1

125

(
2

0

)
= 1

125

(
117

5

)
,

 5

15

15


4

(
1

0

)
, 1
50

(
47

2

)
∅ –

Table 2. Algorithm 3.7 for a critical exponent of the ideal

(x2y2, y3z3) ⊆ F5[x, y, z]
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Table 2 above summarizes each step of the Algorithm 3.7 for this example. In

the previous example, our work was made easier by the fact that there was only

ever one v found in Step 2 of the algorithm. In general, however, there will likely be

several such vectors found, and the magnitudes of the resulting vectors appended

to Le+1 must be compared. The vector computed during the second iteration that

is marked by (∗) is removed from L2 by Step 5 of the algorithm since its norm is

smaller than the other two vectors.

This example also shows the necessity of comparing the norms of the limit

vectors in L∞ when the algorithm terminates. Only the largest norm is the critical

exponent. So, in this case, we see that λb(I) = 1 (compare with Example 4.2).

The remainder of this section is devoted to proving that Algorithm 3.7 actu-

ally returns the desired critical exponent of a monomial ideal. To simplify some

notation in the following lemma, we define

η(e,u) := pe+1(b + 1− Au) (3.2)

for any vector u ∈ Sp,n ∩ 1
pe
Nn so that r(e,u) = min(η(e,u),Ω1).

Lemma 3.11. Let u ∈ 1
pe
Nn∩Sp,n, and let v ∈ Nn with ‖v‖ < p and Av < r(e,u).

Set u′ = u + 1
pe+1 v.

(a) If the coordinate η(e,u)i ≥ Ω for some i, then η(e+ 1,u′)i ≥ Ω.

(b) Suppose that Au < b + 1 and there is vector w ∈ 1
ph
Nn ∩ Sp,n such that

Aw < b+1 with r(e,u) = r(t, σt(w)) for some t < h. If v = pt+1(σt+1(w)−
σt(w)), then u′ ∈ 1

pe+1Nn ∩ Sp,n with Au′ < b + 1 and r(e + 1,u′) =

r(t+ 1, σt+1(w)).

(c) Suppose Au < b + 1 and r(e,u) = r(e − s, σe−s(u)) for some s ≥ 1. If

v = pe−s+1(σe−s+1(u)− σe−s(u)), then u′ ∈ 1
pe+1Nn ∩Sp,n with Au′ < b + 1

and r(e+ 1,u′) = r(e+ 1− s, σe+1−s(u
′)).

Proof. We note that η(e + 1,u′) = p(η(e,u) − Av). Part (a) is then immediate

since η(e+ 1,u′)i ≥ p(Ω− (Av)i) ≥ p(Ω− (1− 1
p
)Ω) = Ω by (3.1).

(b) Since w ∈ 1
ph
Nn ∩Sp,n, we know that v ∈ Nn with ‖v‖ < p, and so, we have

u′ ∈ 1
pe+1Nn ∩ Sp,n. Also, because Aσt+1(w) ≤ Aw < b + 1, it easily follows that

Av < r(e, σt(w)) = r(e,u) ≤ pe+1(b + 1− Au) so that Au′ < b + 1.

To show that the remainder vectors r(e+ 1,u′) and r(t+ 1, σt+1(w)) agree, we

argue coordinatewise. If r(e,u)i = Ω, then both η(e,u)i, η(t, σt(w))i ≥ Ω so that

r(e + 1,u′)i = Ω = r(t + 1, σt+1(w))i by part (a). Otherwise, we must have that

η(e,u)i = η(t, σt(w))i so that η(e+ 1,u′)i = η(t+ 1, σt+1(w))i by our observation

at the beginning of the proof. Hence, it follows that r(e+ 1,u′) = r(t+ 1, σt+1(w))

as claimed.

(c) This is a special case of part (b) with w = u and t = e− s. �
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Theorem 3.12. Suppose that λ is the output of Algorithm 3.7 for the monomial

ideal I and the monomial xb. Then λ = λb(I).

Proof. Let w ∈ L∞ when Algorithm 3.7 terminates. Then w = u + 1
pe(ps−1)v =

u +
∑∞

j=1
1

psj+e v for some u ∈ Le, some s ≥ 1 such that r(e,u) = r(e− s, σe−s(u)),

and v = pe(u − σe−s(u)) ∈ Nn. As in Remark 3.3 and the proof of Theorem 3.4,

we see that u ∈ 1
pe
Nn ∩ Sp,n and Au < b + 1. If we set wh = u +

∑h
j=1

1
psj+e v,

a straightforward induction digit-by-digit starting with w0 = u and using part

(c) of the preceding lemma shows that wh ∈ 1
psh+eNn ∩ Sp,n and Awh < b + 1

for all h. Hence, we have ‖wh‖ ≤ λb for all h by Theorem 2.19, and it follows

that ‖w‖ = limh→∞ ‖wh‖ ≤ λb. As this holds for every w ∈ L∞, this shows that

λ ≤ λb.

Conversely, to see that λb ≤ λ, consider a family of witnesses {we} for λb.

Since there are only finitely many remainders r(e,we), we can choose e as small

as possible such that there is an s ≥ 1 with r(e,we) = r(e − s,we−s). Now,

consider the vector w′ = we +
∑∞

j=1
1

psj+e v
′ and the sequence of partial sums

w′h = we +
∑h

j=1
1

psj+e v
′, where v′ = pe(we − we−s) ∈ Nn. Since the vectors wh

for h < e all have distinct remainders, Theorem 3.1 guarantees that wh is added

to Lh by Step 4 of the algorithm for all h ≤ e so that w′ is appended to the set of

limit vectors L∞.

We will show that

〈λb〉e+sh = ‖we+sh‖ ≤ ‖w′h‖ (3.3)

for all h so that

λb = lim
h→∞
〈λb〉e+sh ≤ lim

h→∞
‖w′h‖ = ‖w′‖ ≤ λ.

This is clear for h = 0 since w′0 = we. Suppose (3.3) holds for some h, and set

v = pe+s(h+1)(we+s(h+1) −we+sh) and v′′ = pe+sh(we+sh −we). It suffices to show

that ‖v‖ ≤ ‖v′‖ to show that
∥∥we+s(h+1)

∥∥ ≤ ∥∥w′h+1

∥∥. Since r(e, σe(we+s(h+1))) =

r(e,we) = r(e − s,we−s), a simple digit-by-digit induction using part (b) of the

preceding lemma shows that the vector w′′ = we−s+
1

pe+s(h−1) v
′′+ 1

pe+sh v is contained

in 1
pe+shNn ∩ Sp,n and satisfies Aw′′ < b + 1 so that ‖w′′‖ ≤ 〈λb〉e+sh = ‖we+sh‖

by Theorem 2.19 and Lemma 2.22. As in the first part of the proof, we also know

that ‖w′h‖ ≤ λb. Combining this with Lemma 2.22 and our inductive assumption

yields

‖we−s‖+
h∑
j=0

1

psj+e
‖v′‖ = ‖w′h‖ = 〈λb〉e+sh

= ‖we+sh‖ = ‖we−s‖+
1

pe
‖v′‖+

1

pe+sh
‖v′′‖
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from which it is easily seen that 1
pe+s(h−1) ‖v′′‖ =

∑h−1
j=0

1
psj+e ‖v′‖ so that

‖we−s‖+
h−1∑
j=0

1

psj+e
‖v′‖+

1

pe+sh
‖v‖ = ‖w′′‖

≤ ‖we+sh‖ = ‖we−s‖+
h∑
j=0

1

psj+e
‖v′‖

implying ‖v‖ ≤ ‖v′‖ as wanted and completing the proof. �

Corollary 3.13. Let I be a monomial ideal. Then all critical exponents of I are

rational.

Proof. This is immediate from the fact that the norm of a vector realizing the

output of Algorithm 3.7 has a repeating base p expansion by construction. �

4. Examples of Computing Critical Exponents

Proposition 4.1. Let I = (xa1 , . . . ,xan) ⊆ S = Fp[x1, x2, . . . , xm] be a monomial

ideal of height 1. Without loss of generality, say x1 | mi for all i. Suppose that

d = a1,1 = minj{a1,j} = maxi{ai,1}. Then lce(I) = 1/d.

Proof. If w is an e-witness for λ = lce(I), then the first coordinate of the inequaliy

Aw < 1 and our assumptions on the exponent matrix imply d 〈λ〉e = d ‖w‖ ≤∑
j a1,jwj < 1. Hence, 〈λ〉e <

1
d
, and taking a limit yields λ ≤ 1

d
. On the other

hand, since d
〈
1
d

〉
e
< 1 for all e, the vector we = (

〈
1
d

〉
e
, 0, . . . , 0) ∈ Sp,n satisfies

Awe < 1 by our assumptions on the exponent matrix so that
〈
1
d

〉
e

= ‖we‖ ≤ λ for

all e by Theorem 2.19. And so, taking a limit yields 1
d
≤ λ. �

To demonstrate the tools from the previous section, we compute the Frobenius

powers for a specific example to show how the characteristic can affect the results.

Example 4.2. Let S = Fp[x, y, z] and I = (x2y2, x3z3). Then the distinct Frobe-

nius powers of I containing I are as follows.

• If p = 2, then:

I [λ] =


S, λ ∈ [0, 1

2
)

(xy, xz), λ ∈ [1
2
, 3
4
)

(xy, x2z), λ ∈ [3
4
, 1)
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• If p = 3, then:

I [λ] =



S, λ ∈ [0, 1
2
)

(x), λ ∈ [1
2
, 2
3
)

(xy, xz), λ ∈ [2
3
, 5
6
)

(xy, x2z), λ ∈ [5
6
, 1)

• If p ≡ 1 (mod 6), then:

I [λ] =


S, λ ∈ [0, 1

2
)

(x), λ ∈ [1
2
, 5
6
)

(xy, x2z), λ ∈ [5
6
, 1)

• If p ≡ 5 (mod 6), then:

I [λ] =


S, λ ∈ [0, 1

2
)

(x), λ ∈ [1
2
, 5p−1

6p
)

(xy, x2z), λ ∈ [5p−1
6p
, 1)

We compute λ(1,0,0); the other computations are similar. A (family of) witnesses

will be a collection of pairs ve = (ae, be) satisfying2 3

2 0

0 3

(ae
be

)
<

2

1

1

 .

That is, a < 1
2

and b < 1
3

such that a+ b adds without carries in base p.

If p = 2, the binary representations of 1
2

and 1
3

are .01 and .01, respectively.

Thus ae and be must each have a zero in the first decimal place; the best we can

do for the sum without a carry is .01. This is realized by, for example, taking

ae = trunce(
1
2
), be = 0. Thus λ(0,1,0) = 1

2
, i.e., y ∈ I [

k
q
] if and only if k

q
< 1

2
.

If p = 3, the trinary representations of 1
2

and 1
3

are .1 and .02, respectively.

Thus the first digit of ae must be at most 1 and the first digit of be must be a zero.

Without carries, the first digit of ae + be cannot be more than 1, so the best we

can do for the sum is .12 = 2
3
. This is realized by, for example, taking ae = .1 =,

be = trunce(
1
3
). Thus λ(0,1,0) = 2

3
, i.e., y ∈ I [

k
q
] if and only if k

q
< 2

3
.

If p ≡ 1 (mod 6), set m = p− 1, s = m
2

, and m = q
3
. The base p representations

of 1
2

and 1
3

are .s and .t. Since s+ t < m, we may add these without carries. The

(unique) family of witnesses is ae = trunce(
1
2
), be = trunce(

1
3
). We conclude that

λ(0,1,0) = 1
2

+ 1
3

= 5
6
, i.e., y ∈ I [

k
q
] if and only if k

q
< 5

6
.

If p ≡ 5 (mod 6), setm = p−1, r = p−2, s = m
2

, t = r
3
, and w = 2t+1. The base

p representations of 1
2

and 1
3

are .s and .tw. In order to add without carries, the first
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digit of ae + be must be at most (s+ t). But s+w > p, so the second digit and all

subsequent digits can be arbitrary. The best we can hope for when adding without

carries is .gm, where g = s + t. One witness is ae = trunce(.s), be = trunce(.ts).

Thus λ(0,1,0) = .gm = g+1
p

= 5p−1
6p

, i.e., y ∈ I [
k
q
] if and only if k

q
< 5p−1

6p
.

u2

u1
q
2

q

a1 a2

q
3

2q
3

q

c1

c2

c3

b1

b2

b3

1

b

ab

ab2

bc

b2c2

ab2c

b2c ab3c

a2b2

I = (a2b2, b3c3)

I [j3] = (ab, b2c)

I [1/2] = (b)

5. Further Questions

By Corollary 2.9, every monomial ideal I containing a squarefree monomial

satisfies I [λ] = (1) for all λ ∈ (0, 1]. This leads to some natural questions.

Question 5.1. Under what conditions do two monomial ideals I and J satisfy

I [λ] = J [λ] for all λ < 1?

In particular:

Question 5.2. Can we characterize which monomial ideals I have lce(I) = 1?

If every monomial of I is divisible by a p-th power, then every column of the

exponent matrix A contains an entry at least p so that the only vector v ∈ Nn

maximizing ‖v‖ with Av < p1 in the first iteration of Algorithm 3.2 is the zero

vector, meaning that lce(I) ≤ 1
p
. This proves the converse to Corollary 2.9 when

p = 2 and gives a restriction on the possible answers to the above question in

general. However, the converse to Corollary 2.9 is false for p ≥ 3.
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Proposition 5.3. If I = (xa1 , . . . ,xap−1) ⊆ S = Fp[x1, x2, . . . , xm] and A1 ≤
(p− 1)1, then lce(I) = 1.

Proof. Using Algorithm 3.2 with b = 0, we show that we = 1
p−1(1 − 1

pe
)1 is

an e-witness for all e. Indeed, this is clear if e = 0. If e ≥ 1 and we−1 is an

(e − 1)-witness, then the remainder vector associated to we−1 is r = 1 − Awe−1.

Since A1 ≤ (p − 1)1, it follows that per ≥ p1. Hence, the vector 1 maximizes

‖v‖ among all v ∈ Np−1 subject to the constraints Av < per and ‖v‖ < p,

and we = we−1 + 1
pe

1 is an e-witness. And so, Proposition 2.24 implies that

lce(I) = lime→∞ ‖we‖ = lime→∞ 1− 1
pe

= 1. �

Using the above proposition, we can produce lots of monomial ideals I not

containing a squarefree monomial with lce(I) = 1.

Example 5.4. Suppose p ≥ 3, and write p− 1 = 2k for some integer k. Applying

the preceding proposition to the exponent matrix

A =


1 1 · · · 1 0 · · · 0 0

2 2 · · · 2 0 · · · 0 0

0 0 · · · 0 2 · · · 2 2

0 0 · · · 0︸ ︷︷ ︸
k

1 · · · 1 1︸ ︷︷ ︸
k


shows that the I = (xy2, z2w) ⊆ S = Fp[x, y, z, w] is a monomial ideal not con-

taining any squarefree monomials with lce(I) = 1.
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